Transient Transformation of Potato Plant (Solanum tuberosum L.) Granola Cultivar Using Syringe Agroinfiltration

Yesy John Mba’u, Iriawati Iriawati, Ahmad Faizal

Abstract


Genetic transformation has been used as an alternative approach to improve the quality and the productivity of potato plant. In this study, different conditions have been set up to optimize transient GFP (Green Fluorescence Protein) expression in potato cv. Granola. Leaves of potato were infiltrated with Agrobacterium tumefaciens strain C58C1 harboring pK7FWGF2 vector with a nuclear-targeted GFP by simple pressure. GFP signals allowed simple evaluation of transformation efficiency which were indicated by GFP expression in nucleus of leaf cells in infiltrated
areas. The results showed that leaf position, co-cultivation time, optical density and the presence of acetosyringone significantly affected the transformation efficiency. The fourth terminal leaves from four-week old plants were the optimum age for transformation. Furthermore, the highest transient transformation efficiency was obtained upon 48 h post infiltration at an OD600 = 0.8, and the presence of 200 μM acetosyringone. In conclusion, the developed protocol will be useful to study gene function as well as to generate stable transformation of this potato cultivar.

Keywords


Agroinfiltration; Green Fluorescence Protein; Nuclear Localization Signal; Potato; Transient expression

Full Text:

PDF

References


Abelenda, J. A., Navarro, C., & Prat, S. (2011). From the model to the crop: Genes controlling tuber formation in potato. Current Opinion in Biotechnology, 22(2), 287–292. crossref

Banerjee, A. K., Prat, S., & Hannapel, D. J. (2006). Efficient production of transgenic potato (S. tuberosum L. ssp. andigena) plants via Agrobacterium tumefaciens-mediated transformation. Plant Science, 170(4), 732–738. crossref

Bashandy, H., Jalkanen, S., & Teeri, T. H. (2015). Within leaf variation is the largest source of variation in agroinfiltration of Nicotiana benthamiana. Plant Methods, 11(1). crossref

Ben-Amar, A., Cobanov, P., Buchholz, G., Mliki, A., & Reustle, G. (2013). In planta agro-infiltration system for transient gene expression in grapevine (Vitis spp.). Acta Physiologiae Plantarum, 35(11), 3147–3156. crossref

Bhaskar, P. B., Venkateshwaran, M., Wu, L., Ané, J. M., & Jiang, J. (2009). Agrobacterium-mediated transient gene expression and silencing: A rapid tool for functional gene assay in potato. PLoS ONE, 4(6), e5812. crossref

Birch, P. R. J., Bryan, G., Fenton, B., Gilroy, E. M., Hein, I., Jones, J. T., … Toth, I. K. (2012). Crops that feed the world 8: Potato: are the trends of increased global production sustainable? Food Security, 4(4), 477–508. crossref

Chakravarty, B., & Wang-Pruski, G. (2010). Rapid regeneration of stable transformants in cultures of potato by improving factors influencing Agrobacterium-mediated transformation. Advances in Bioscience and Biotechnology, 1(5), 409–416. crossref

Dobnik, D., Lazar, A., Stare, T., Gruden, K., Vleeshouwers, V. G. A. A., & Žel, J. (2016). Solanum venturii, a suitable model system for virus-induced gene silencing studies in potato reveals StMKK6 as an important player in plant immunity. Plant Methods, 12(1), 29. crossref

Du, J., Rietman, H., & Vleeshouwers, V. G. A. A. (2014). Agroinfiltration and PVX agroinfection in potato and Nicotiana benthamiana. Journal of Visualized Experiments, 83, e50971. crossref

Faizal, A., & Geelen, D. (2012). Agroinfiltration of intact leaves as a method for the transient and stable transformation of saponin producing Maesa lanceolata. Plant Cell Reports, 31(8), 1517–1526. crossref

Gnasekaran, P., & Subramaniam, S. (2015). Mapping of the interaction between Agrobacterium tumefaciens and Vanda Kasem’s Delight orchid protocorm-like bodies. Indian Journal of Microbiology, 55(3), 285–291. crossref

Han, E., Goo, Y., Lee, M., & Lee, S. (2015). An efficient transformation method for a potato (Solanum tuberosum L. var. Atlantic). Journal of Plant Biotechnology, 42, 77–82. crossref

Hernandez-Garcia, C. M., Martinelli, A. P., Bouchard, R. A., & Finer, J. J. (2009). A soybean (Glycine max) polyubiquitin promoter gives strong constitutive expression in transgenic soybean. Plant Cell Reports, 28(5), 837–849. crossref

Hosein, F. N., Lennon, A. M., & Umaharan, P. (2012). Optimization of an Agrobacterium-mediated transient assay for gene expression studies in Anthurium andraeanum. Journal of the American Society for Horticultural Science, 137(4), 263–272. Retrieved from PDF

Krenek, P., Samajova, O., Luptovciak, I., Doskocilova, A., Komis, G., & Samaj, J. (2015). Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnology Advances, 33(6), 1024–1042. crossref

Matsuo, K., Fukuzawa, N., & Matsumura, T. (2016). A simple agroinfiltration method for transient gene expression in plant leaf discs. Journal of Bioscience and Bioengineering, 122(3), 351–356. crossref

Mirzaee, H., Sharafi, A., & Hashemi Sohi, H. (2016). In vitro regeneration and transient expression of recombinant sesquiterpene cyclase (SQC) in Artemisia annua L. South African Journal of Botany, 104, 225–231. crossref

Mo, R., Huang, Y., Yang, S., Zhang, Q., & Luo, Z. (2015). Development of Agrobacterium-mediated transient transformation in persimmon (Diospyros kaki Thunb.). Scientia Horticulturae, 192, 29–37. crossref

Park, T. H., Vleeshouwers, V. G. A. A., Jacobsen, E., Van Der Vossen, E., & Visser, R. G. F. (2009). Molecular breeding for resistance to Phytophthora infestans (Mont.) de Bary in potato (Solanum tuberosum L.): A perspective of cisgenesis. Plant Breeding, 128(2), 109–117. crossref

Shah, S. H., Ali, S., Jan, S. A., Jalal-Ud-Din, & Ali, G. M. (2015). Piercing and incubation method of in planta transformation producing stable transgenic plants by overexpressing DREB1A gene in tomato (Solanum lycopersicum Mill.). Plant Cell, Tissue and Organ Culture (PCTOC), 120(3), 1139–1157. crossref

Sparkes, I. A., Runions, J., Kearns, A., & Hawes, C. (2006). Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols, 1(4), 2019–2025. crossref

Veale, M. A., Slabbert, M. M., & Van Emmenes, L. (2012). Agrobacterium-mediated transformation of potato cv. Mnandi for resistance to the potato tuber moth (Phthorimaea operculella). South African Journal of Botany, 80, 67–74. crossref

Vinterhalter, D., Nevena, S. Z., & Ivana, M. (2008). Protocols for Agrobacterium-mediated transformation of potato. Fruit, Vegetable and Cereal Science and Biotechnology, 2(Special Issue 1), 1–15. Retrieved from PDF

Wang, K. (2006). Agrobacterium protocols. Methods in Molecular Biology (2nd ed.). Totowa (New Jersey): Humana Press. crossref

Wroblewski, T., Tomczak, A., & Michelmore, R. (2005). Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnology Journal, 3(2), 259–273. crossref

Ziemienowicz, A. (2014). Agrobacterium-mediated plant transformation: Factors, applications and recent advances. Biocatalysis and Agricultural Biotechnology, 3(4), 95–102. crossref




DOI: http://doi.org/10.17503/agrivita.v40i2.1467

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.