Transient Transformation of Potato Plant (Solanum tuberosum L.) Granola Cultivar Using Syringe Agroinfiltration

Yesy John Mba’u, Iriawati Iriawati, Ahmad Faizal

Abstract


Genetic transformation has been used as an alternative approach to improve the quality and the productivity of potato plant. In this study, different conditions have been set up to optimize transient GFP (Green Fluorescence Protein) expression in potato cv. Granola. Leaves of potato were infiltrated with Agrobacterium tumefaciens strain C58C1 harboring pK7FWGF2 vector with a nuclear-targeted GFP by simple pressure. GFP signals allowed simple evaluation of transformation efficiency which were indicated by GFP expression in nucleus of leaf cells in infiltrated
areas. The results showed that leaf position, co-cultivation time, optical density and the presence of acetosyringone significantly affected the transformation efficiency. The fourth terminal leaves from four-week old plants were the optimum age for transformation. Furthermore, the highest transient transformation efficiency was obtained upon 48 h post infiltration at an OD600 = 0.8, and the presence of 200 μM acetosyringone. In conclusion, the developed protocol will be useful to study gene function as well as to generate stable transformation of this potato cultivar.

Keywords


Agroinfiltration; Green Fluorescence Protein; Nuclear Localization Signal; Potato; Transient expression

Full Text:

PDF

References


Abelenda, J. A., Navarro, C., & Prat, S. (2011). From the model to the crop: Genes controlling tuber formation in potato. Current Opinion in Biotechnology, 22(2), 287–292. http://doi.org/10.1016/j.copbio.2010.11.013

Banerjee, A. K., Prat, S., & Hannapel, D. J. (2006). Efficient production of transgenic potato (S. tuberosum L. ssp. andigena) plants via Agrobacterium tumefaciens-mediated transformation. Plant Science, 170(4), 732–738. http://doi.org/10.1016/j.plantsci.2005.11.007

Bashandy, H., Jalkanen, S., & Teeri, T. H. (2015). Within leaf variation is the largest source of variation in agroinfiltration of Nicotiana benthamiana. Plant Methods, 11(1). http://doi.org/10.1186/s13007-015-0091-5

Ben-Amar, A., Cobanov, P., Buchholz, G., Mliki, A., & Reustle, G. (2013). In planta agro-infiltration system for transient gene expression in grapevine (Vitis spp.). Acta Physiologiae Plantarum, 35(11), 3147–3156. http://doi.org/10.1007/s11738-013-1348-0

Bhaskar, P. B., Venkateshwaran, M., Wu, L., Ané, J. M., & Jiang, J. (2009). Agrobacterium-mediated transient gene expression and silencing: A rapid tool for functional gene assay in potato. PLoS ONE, 4(6), e5812. http://doi.org/10.1371/journal.pone.0005812

Birch, P. R. J., Bryan, G., Fenton, B., Gilroy, E. M., Hein, I., Jones, J. T., … Toth, I. K. (2012). Crops that feed the world 8: Potato: are the trends of increased global production sustainable? Food Security, 4(4), 477–508. http://doi.org/10.1007/s12571-012-0220-1

Chakravarty, B., & Wang-Pruski, G. (2010). Rapid regeneration of stable transformants in cultures of potato by improving factors influencing Agrobacterium-mediated transformation. Advances in Bioscience and Biotechnology, 1(5), 409–416. http://doi.org/10.4236/abb.2010.15054

Dobnik, D., Lazar, A., Stare, T., Gruden, K., Vleeshouwers, V. G. A. A., & Žel, J. (2016). Solanum venturii, a suitable model system for virus-induced gene silencing studies in potato reveals StMKK6 as an important player in plant immunity. Plant Methods, 12(1), 29. http://doi.org/10.1186/s13007-016-0129-3

Du, J., Rietman, H., & Vleeshouwers, V. G. A. A. (2014). Agroinfiltration and PVX agroinfection in potato and Nicotiana benthamiana. Journal of Visualized Experiments, 83, e50971. http://doi.org/10.3791/50971

Faizal, A., & Geelen, D. (2012). Agroinfiltration of intact leaves as a method for the transient and stable transformation of saponin producing Maesa lanceolata. Plant Cell Reports, 31(8), 1517–1526. http://doi.org/10.1007/s00299-012-1266-4

Gnasekaran, P., & Subramaniam, S. (2015). Mapping of the interaction between Agrobacterium tumefaciens and Vanda Kasem’s Delight orchid protocorm-like bodies. Indian Journal of Microbiology, 55(3), 285–291. http://doi.org/10.1007/s12088-015-0519-7

Han, E., Goo, Y., Lee, M., & Lee, S. (2015). An efficient transformation method for a potato (Solanum tuberosum L. var. Atlantic). Journal of Plant Biotechnology, 42, 77–82. http://doi.org/10.5010/JPB.2015.42.2.77

Hernandez-Garcia, C. M., Martinelli, A. P., Bouchard, R. A., & Finer, J. J. (2009). A soybean (Glycine max) polyubiquitin promoter gives strong constitutive expression in transgenic soybean. Plant Cell Reports, 28(5), 837–849. http://doi.org/10.1007/s00299-009-0681-7

Hosein, F. N., Lennon, A. M., & Umaharan, P. (2012). Optimization of an Agrobacterium-mediated transient assay for gene expression studies in Anthurium andraeanum. Journal of the American Society for Horticultural Science, 137(4), 263–272. Retrieved from http://journal.ashspublications.org/content/137/4/263.full.pdf

Krenek, P., Samajova, O., Luptovciak, I., Doskocilova, A., Komis, G., & Samaj, J. (2015). Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnology Advances, 33(6), 1024–1042. http://doi.org/10.1016/j.biotechadv.2015.03.012

Matsuo, K., Fukuzawa, N., & Matsumura, T. (2016). A simple agroinfiltration method for transient gene expression in plant leaf discs. Journal of Bioscience and Bioengineering, 122(3), 351–356. http://doi.org/10.1016/j.jbiosc.2016.02.001

Mirzaee, H., Sharafi, A., & Hashemi Sohi, H. (2016). In vitro regeneration and transient expression of recombinant sesquiterpene cyclase (SQC) in Artemisia annua L. South African Journal of Botany, 104, 225–231. http://doi.org/10.1016/j.sajb.2015.10.005

Mo, R., Huang, Y., Yang, S., Zhang, Q., & Luo, Z. (2015). Development of Agrobacterium-mediated transient transformation in persimmon (Diospyros kaki Thunb.). Scientia Horticulturae, 192, 29–37. http://doi.org/10.1016/j.scienta.2015.05.013

Park, T. H., Vleeshouwers, V. G. A. A., Jacobsen, E., Van Der Vossen, E., & Visser, R. G. F. (2009). Molecular breeding for resistance to Phytophthora infestans (Mont.) de Bary in potato (Solanum tuberosum L.): A perspective of cisgenesis. Plant Breeding, 128(2), 109–117. http://doi.org/10.1111/j.1439-0523.2008.01619.x

Shah, S. H., Ali, S., Jan, S. A., Jalal-Ud-Din, & Ali, G. M. (2015). Piercing and incubation method of in planta transformation producing stable transgenic plants by overexpressing DREB1A gene in tomato (Solanum lycopersicum Mill.). Plant Cell, Tissue and Organ Culture (PCTOC), 120(3), 1139–1157. http://doi.org/10.1007/s11240-014-0670-6

Sparkes, I. A., Runions, J., Kearns, A., & Hawes, C. (2006). Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols, 1(4), 2019–2025. http://doi.org/10.1038/nprot.2006.286

Veale, M. A., Slabbert, M. M., & Van Emmenes, L. (2012). Agrobacterium-mediated transformation of potato cv. Mnandi for resistance to the potato tuber moth (Phthorimaea operculella). South African Journal of Botany, 80, 67–74. http://doi.org/10.1016/j.sajb.2012.02.007

Vinterhalter, D., Nevena, S. Z., & Ivana, M. (2008). Protocols for Agrobacterium-mediated transformation of potato. Fruit, Vegetable and Cereal Science and Biotechnology, 2(Special Issue 1), 1–15. Retrieved from https://pdfs.semanticscholar.org/64e2/62bc2e1690736 7446ae3d7c06633214b09a8.pdf

Wang, K. (2006). Agrobacterium protocols. Methods in Molecular Biology (2nd ed.). Totowa (New Jersey): Humana Press. http://doi.org/10.1086/519591

Wroblewski, T., Tomczak, A., & Michelmore, R. (2005). Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnology Journal, 3(2), 259–273. http://doi.org/10.1111/j.1467-7652.2005.00123.x

Ziemienowicz, A. (2014). Agrobacterium-mediated plant transformation: Factors, applications and recent advances. Biocatalysis and Agricultural Biotechnology, 3(4), 95–102. http://doi.org/10.1016/j.bcab.2013.10.004




DOI: http://doi.org/10.17503/agrivita.v40i2.1467

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.