Utilization of Liquid Smoke to Suppress Blood Diseases on Bananas and Its Effects on the Plant Growth

Imas Aisyah, Meity Suradji Sinaga, Abdjad Asih Nawangsih, Giyanto Giyanto, Gustan Pari


Liquid smoke is reported to be effective to inhibit some bacteria. The study aimed to evaluate the effects of liquid smoke (LS) from coconut shell (CS-LS), pinecone (P-LS), and oil palm branch (OPB-LS) on the incidences of blood disease, induced resistance to Ralstonia syzygii subsp. celebesensis, and plant growth. Two days after banana seedlings were treated with LS, ethylene, auxin, lignin, activities of the enzymes of peroxidase (POD) and phenylalanine ammonia lyase (PAL) on the root of the banana seedlings were measured. Then, the seedlings were inoculated by R. syzygii subsp. celebesensis. The plant growth and incidence of blood diseases were observed daily and the 31st day after the application of LS and this bacteria inoculation. The results showed that the CS-LS, P-LS, and OPB-LS at all tested concentration could suppress the incidence of blood diseases up to 100 %, induce resistance of banana seedlings to the R. syzygii subsp. celebesensis with increased levels of ethylene, auxin, lignin, activities of POD and PAL, and plant growth, significantly. Based on the effectiveness of this bacterial control and the ability to promote the growth of banana seedlings test, it is recommended that the most effective treatment is P-LS 0.5 %.


Bananas; Blood disease; Induced resistance; Peroxidase; Phenylalanine ammonia lyase

Full Text:



Agrios, G. N. (2005). Plant pathology (5th ed.). San Diego, USA: Academic Press.

Bjarnsholt, T., Alhede, M., Jensen, P. Ø., Nielsen, A. K., Johansen, H. K., Homøe, P., … Kirketerp-Møller, K. (2015). Antibiofilm properties of acetic acid. Advances in Wound Care, 4(7), 363–372. http://doi.org/10.1089/wound.2014.0554

Cazar, M. E., Schmeda-Hirschmann, G., & Astudillo, L. (2005). Antimicrobial butyrolactone I derivatives from the Ecuadorian soil fungus Aspergillus terreus Thorn. var terreus. World Journal of Microbiology and Biotechnology, 21(6–7), 1067–1075. http://doi.org/10.1007/s11274-004-8150-5

Choi, G. G., Jung, S. H., Oh, S. J., & Kim, J. S. (2014). Total utilization of waste tire rubber through pyrolysis to obtain oils and CO2 activation of pyrolysis char. Fuel Processing Technology, 123, 57–64. http://doi.org/10.1016/j.fuproc.2014.02.007

Correa-Aragunde, N., Foresi, N., Delledonne, M., & Lamattina, L. (2013). Auxin induces redox regulation of ascorbate peroxidase 1 activity by S-nitrosylation/denitrosylation balance resulting in changes of root growth pattern in Arabidopsis. Journal of Experimental Botany, 64(11), 3339–3349. http://doi.org/10.1093/jxb/ert172

Dong, Y. H., Wang, L. H., Xu, J. L., Zhang, H. B., Zhang, X. F., & Zhang, L. H. (2001). Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature, 411, 813–817. http://doi.org/10.1038/35081101

Eden-Green, S. J., & Sastraatmadja, H. (1990). Blood disease of banana present in Java. FAO Plant Protection Bulletin, 38, 49-50.

Flematti, G. R., Dixon, K. W., & Smith, S. M. (2015). What are karrikins and how were they “discovered” by plants? BMC Biology, 13, 108. http://doi.org/10.1186/s12915-015-0219-0

Flematti, G. R., Ghisalberti, E. L., Dixon, K. W., & Trengove, R. D. (2004). A compound from smoke that promotes seed germination. Science, 305(5686), 977. http://doi.org/10.1126/science.1099944

Flematti, G. R., Merritt, D. J., Piggott, M. J., Trengove, R. D., Smith, S. M., Dixon, K. W., & Ghisalberti, E. L. (2011). Burning vegetation produces cyanohydrins that liberate cyanide and stimulate seed germination. Nature Communications, 2, 360. http://doi.org/10.1038/ncomms1356

Gailīte, A., Samsone, I., & Ievinsh, G. (2005). Ethylene is involved in Trichoderma-induced resistance of bean plants against Pseudomonas syringae. Acta Universitatis Latviensis, 691, 59–70. Retrieved from http://eeb.lu.lv/EEB/2005/Gailite.pdf

Hadiwiyono, Subandiyah, S., Widada, J., Fegan, M., & Taylor, P. (2013). Diversity of entophytic bacteria in symptomatic and asymptomatic infected bananas from endemic area of blood disease bacterium based on RISA. ARPN Journal of Science and Technology, 3(4), 376–381. Retrieved from http://www.ejournalofscience.org/archive/vol3no4/vol3no4_6.pdf

Hadiwiyono. (2011). Blood bacterial wilt disease of banana: the distribution of pathogen in infected plant, symptoms, and potentiality of diseased tissues as source of infective inoculums. Nusantara Bioscience, 3(3), 112–117. http://doi.org/10.13057/nusbiosci/n030302

Ismael, N. F. (2013). “Vinegar” as anti-bacterial biofilm formed by Streptococcus pyogenes isolated from recurrent tonsillitis patients, in vitro. Jordan Journal of Biological Sciences, 6(3), 191–197. Retrieved from http://jjbs.hu.edu.jo/files/v6n3/Paper Number 3m.pdf

Jafari, A. A., Falah-Tafti, A., Lotfi-Kamran, M. H., Zahraeii, A., & Kazemi, A. (2012). Vinegar as a removing agent of Candida albicans from acrylic resin plates. Jundishapur Journal of Microbiology, 5(2), 388–392. http://doi.org/10.5812/jjm.2499

Jagani, S., Chelikani, R., & Kim, D.-S. (2009). Effects of phenol and natural phenolic compounds on biofilm formation by Pseudomonas aeruginosa. Biofouling, 25(4), 321–324. http://doi.org/10.1080/08927010802660854

Kappachery, S., Paul, D., Yoon, J., & Kweon, J.-H. (2010). Vanillin, a potential agent to prevent biofouling of reverse osmosis membrane. Biofouling, 26(6), 667–672. http://doi.org/10.1080/08927014.2010.506573

Kȩpczyński, J., & Van Staden, J. (2012). Interaction of karrikinolide and ethylene in controlling germination of dormant Avena fatua L. caryopses. Plant Growth Regulation, 67(2), 185–190. http://doi.org/10.1007/s10725-012-9675-5

Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6, 462. http://doi.org/10.3389/fpls.2015.00462

Lawton, K. A., Potter, S. L., Uknes, S., & Ryals, J. (1994). Acquired resistance signal transduction in Arabidopsis is ethylene independent. The Plant Cell, 6(5), 581–588. http://doi.org/10.1105/tpc.6.5.581

Liang, Z., Ma, Y., Xu, T., Cui, B., Liu, Y., Guo, Z., & Yang, D. (2013). Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in Salvia miltiorrhiza bunge hairy roots. PloS One, 8(9), e72806. http://doi.org/10.1371/journal.pone.0072806

Lingbeck, J. M., Cordero, P., O’Bryan, C. A., Johnson, M. G., Ricke, S. C., & Crandall, P. G. (2014). Functionality of liquid smoke as an all-natural antimicrobial in food preservation. Meat Science, 97(2), 197–206. http://doi.org/10.1016/j.meatsci.2014.02.003

Mandabi, A., Ganin, H., Krief, P., Rayo, J., & Meijler, M. M. (2014). Karrikins from plant smoke modulate bacterial quorum sensing. Chemical Communications, 50(40), 5322–5325. http://doi.org/10.1039/c3cc47501h

Miedes, E., Vanholme, R., Boerjan, W., & Molina, A. (2014). The role of the secondary cell wall in plant resistance to pathogens. Frontiers in Plant Science, 5, 358. http://doi.org/10.3389/fpls.2014.00358

Nelson, D. C., Flematti, G. R., Ghisalberti, E. L., Dixon, K. W., & Smith, S. M. (2012). Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annual Review of Plant Biology, 63, 107–130. http://doi.org/10.1146/annurev-arplant-042811-105545

Niu, C., & Gilbert, E. S. (2004). Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Applied and Environmental Microbiology, 70(12), 6951–6956. http://doi.org/10.1128/AEM.70.12.6951-6956.2004

O’Donnell, P. J., Jones, J. B., Antoine, F. R., Ciardi, J., & Klee, H. J. (2001). Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen. Plant Journal, 25(3), 315–323. http://doi.org/10.1046/j.1365-313X.2001.00968.x

Panagan, A. T., & Syarif, N. (2009). Uji daya hambat asap cair hasil pirolisis kayu pelawan (Tristania abavata) terhadap bakteri Echerichia coli [Inhibitory power liquid smoke test results wood pyrolysis pelawan (Tristania abavata) against bacteria Echerichia coli]. Jurnal Penelitian Sains, Edisi Khusus(C), 30–32. Retrieved from https://jpsmipaunsri.files.wordpress.com/2010/08/0630-32-c-almunadi-ganjil.pdf

Payamara, J. (2011). Usage of wood vinegar as new organic substance. International Journal of ChemTech Research, 3(3), 1658–1662. Retrieved from https://pdfs.semanticscholar.org/531d/67de4179d9bda5f5a6622784bfb9310e 8c16.pdf

Pegg, K. G., Moore, N. Y., & Bentley, S. (1996). Fusarium wilt of banana in Australia: a review. Australian Journal of Agricultural Research, 47(5), 637–650. http://doi.org/10.1071/AR9960637

Ponnusamy, K., Kappachery, S., Thekeettle, M., Song, J.-H., & Kweon, J.-H. (2013). Anti-biofouling property of vanillin on Aeromonas hydrophila initial biofilm on various membrane surfaces. World Journal of Microbiology and Biotechnology, 29(9), 1695–1703. http://doi.org/10.1007/s11274-013-1332-2

Ponnusamy, K., Paul, D., Kim, Y.-S., & Kweon, J.-H. (2010). 2(5H)-Furanone: A prospective strategy for biofouling-control in membrane biofilm bacteria by quorum sensing inhibition. Brazilian Journal of Microbiology, 41(1), 227–234. http://doi.org/10.1590/S1517-83822010000100032

Rudrappa, T., & Bais, H. P. (2008). Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. Journal of Agricultural and Food Chemistry, 56(6), 1955–1962. http://doi.org/10.1021/jf072591j

Safni, I., Subandiyah, S., & Fegan, M. (2018). Ecology, epidemiology and disease management of Ralstonia syzygii in Indonesia. Frontiers in Microbiology, 9, 419. http://doi.org/10.3389/fmicb.2018.00419

Supriadi. (2005). Present status of blood disease in Indonesia. In C. Allen, P. Prior, & A. C. Hayward (Eds.), Bacterial wilt disease and the Ralstonia solanacearum species complex (pp. 395–404). St. Paul, MN: APS Press.

Thakur, M., & Sohal, B. S. (2013). Role of elicitors in inducing resistance in plants against pathogen infection: A review. ISRN Biochemistry, 2013, 1–10. http://doi.org/10.1155/2013/762412

Van de Poel, B., & Van Der Straeten, D. (2014). 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene! Frontiers in Plant Science, 5, 640. http://doi.org/10.3389/fpls.2014.00640

Waters, M. T., Scaffidi, A., Sun, Y. K., Flematti, G. R., & Smith, S. M. (2014). The karrikin response system of Arabidopsis. Plant Journal, 79(4), 623–631. http://doi.org/10.1111/tpj.12430

Yang, J.-F., Yang, C.-H., Liang, M.-T., Gao, Z.-J., Wu, Y.-W., & Chuang, L.-Y. (2016). Chemical composition, antioxidant, and antibacterial activity of wood vinegar from Litchi chinensis. Molecules, 21(9), 1150. http://doi.org/10.3390/molecules21091150

Zuraida, I., Sukarno, & Budijanto, S. (2011). Antibacterial activity of coconut shell liquid smoke (CS-LS) and its application on fish ball preservation. International Food Research Journal, 18, 405–410. Retrieved from http://www.ifrj.upm.edu.my/18 (01) 2011/(42) IFRJ-2010-100.pdf

DOI: http://doi.org/10.17503/agrivita.v40i3.1390

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.