Effects of Sucrose and Plant Hormone on the Pigmentation of Mesocarp of White- and Red-Fleshed Peach Fruits

Inna Martha Rumainum, Kanjana Worarad, Yoshikazu Yamaki, Kenji Yamane


Three cultivars of peach (Prunuspersica L. Batsch): ‘Ikeda’, ‘Akatsuki’ (white-fleshed) and ‘Tenshin Suimitsuto’ (red-fleshed) were used to study the effect of sucrose and auxin on the pigmentation of mesocarp. In the first experiment, mesocarp discs of ‘Ikeda’ and ‘Tenshin Suimitsuto’ were incubated on solidified MS medium containing sucrose, 1-naphtalene acetic acid (NAA), and their combination. A treatment of 10μM NAA increased the total of anthocyanin content in ‘Ikeda’. In ‘Tenshin Suimitsuto’, a treatment of 100 mM sucrose increased the total of anthocyanin content. In the second experiment, mesocarp discs of ‘Akatsuki’ and ‘Tenshin Suimitsuto’ were employed to examine the effect of 2,3,5-triiodobenzoic acetic acid (TIBA). The mesocarp discs were incubated on solidified MS medium containing NAA or combination of NAA and TIBA. A single TIBA treatment was applied in ‘Tenshin Suimitsuto’. TIBA treatment significantly (P<0.05) reduced the total anthocyanin content in both cultivars. The total phenolic content was decreased by TIBA treatment in both cultivars. A treatment of single TIBA (200 mM) significantly (P<0.05) inhibited anthocyanin, flavonoid and phenolic accumulation in ‘Tenshin Suimitsuto’. Present study shows that sucrose and auxin might regulate anthocyanin synthesis, as well as phenolic compounds, in the flesh of peach fruit.


Anthocyanin; NAA; Peach; Pigmentation; TIBA

Full Text:



Cantín, C. M., Moreno, M. A., & Gogorcena, Y. (2009). Evaluation of the antioxidant capacity, phenolic compounds, and vitamin C content of different peach and nectarine [Prunus persica (L.) batsch] breeding progenies. Journal of Agricultural and Food Chemistry, 57(11), 4586–4592. http://doi.org/10.1021/jf900385a

Carvalho, R. F., Quecini, V., & Peres, L. E. P. (2010). Hormonal modulation of photomorphogenesis-controlled anthocyanin accumulation in tomato (Solanum lycopersicum L. cv Micro-Tom) hypocotyls: Physiological and genetic studies. Plant Science, 178(3), 258–264. http://doi.org/10.1016/j.plantsci.2010.01.013

Çelik, H., Özgen, M., Serçe, S., & Kaya, C. (2008). Phytochemical accumulation and antioxidant capacity at four maturity stages of cranberry fruit. Scientia Horticulturae, 117(4), 345–348. http://doi.org/10.1016/j.scienta.2008.05.005

Christie, A. E., & Leopold, A. C. (1965). On the manner of triiodobenzoic acid inhibition of auxin transport. Plant and Cell Physiology, 6(2), 337–345. http://doi.org/10.1093/oxfordjournals.pcp.a079104

Dai, Z.-W., Meddar, M., Renaud, C., Merlin, I., Hilbert, G., Delro, S., & Gomès, E. (2014). Long-term in vitro culture of grape berries and its application to assess the effects of sugar supply on anthocyanin accumulation. Journal of Experimental Botany, 65(16), 4665–4677. http://doi.org/10.1093/jxb/ert489

Falchi, R., Zanon, L., De Marco, F., Nonis, A., Pfeiffer, A., & Vizzotto, G. (2013). Tissue-specific and developmental expression pattern of abscisic acid biosynthetic genes in peach fruit: Possible role of the hormone in the coordinated growth of seed and mesocarp. Journal of Plant Growth Regulation, 32(3), 519–532. http://doi.org/10.1007/s00344-013-9318-8

Fikrinda, W., Susanto, S., Efendi, D., & Melati, M. (2015). Study on fruit quality of selected seeded pummelo cultivars and its relationship with antioxidant activity content during storage period. Agrivita Journal of Agricultural Science, 37(3), 210–219. http://doi.org/10.17503/Agrivita-2015-37-3-p210-219

Given, N. K., Venis, M. A., & Gierson, D. (1988). Hormonal regulation of ripening in the strawberry, a non-climacteric fruit. Planta, 174(3), 402–406. http://doi.org/10.1007/BF00959527

Hikosaka, S., & Sugiyama, N. (2015). Effects of exogenous plant growth regulators on yield, fruit growth, and concentration of endogenous hormones in gynoecious parthenocarpic cucumber (Cucumis sativus L.). Horticulture Journal, 84(4), 342–349. http://doi.org/10.2503/hortj.MI-051

Jiao, Y., Ma, R. J., Shen, Z. J., Yan, J., & Yu, M. L. (2014). Gene regulation of anthocyanin biosynthesis in two blood-flesh peach (Prunus persica (L.) Batsch) cultivars during fruit development. Journal of Zhejiang University-Science B, 15(9), 809–819. http://doi.org/DOI 10.1631/jzus.B1400086

Lewis, D. R., Ramirez, M. V., Miller, N. D., Vallabhaneni, P., Ray, W. K., Helm, R. F., … Muday, G. K. (2011). Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks. Plant Physiology, 156(1), 144–164. http://doi.org/10.1104/pp.111.172502

Manganaris, G. A., Goulas, V., Vicente, A. R., & Terry, L. A. (2014). Berry antioxidants: Small fruits providing large benefits. Journal of the Science of Food and Agriculture. http://doi.org/10.1002/jsfa.6432

Martínez, C., Manzano, S., Megías, Z., Garrido, D., Picó, B., & Jamilena, M. (2013). Involvement of ethylene biosynthesis and signalling in fruit set and early fruit development in zucchini squash (Cucurbita pepo L.). BMC Plant Biology, 13(1), 139. http://doi.org/10.1186/1471-2229-13-139

Ohmiya, A. (2000). Effects of auxin on growth and ripening of mesocarp discs of peach fruit. Scientia Horticulturae, 84(3–4), 309–319. http://doi.org/10.1016/S0304-4238(99)00137-5

Rumainum, I. M. (2016). Studies on the accumulation of flavonoid and carotenoid in peach fruits. Dissertation Abstracts International, 03,https://tuat.repo.nii.ac.jp/?action=repository_action_common_download&item_id=1322&item_no=1&attribute_id=16&file_no=1

Rumainum, I. M., Worarad, K., Yamaki, Y., & Yamane, K. (2016). Effects of developmental stages, light, and an auxin polar transport inhibitor on the skin and flesh pigmentation of red-fleshed peach fruit. The Horticulture Journal, 85(2), 141–147. http://doi.org/10.2503/hortj.MI-077

Tadiello, A., Ziosi, V., Negri, A. S., Noferini, M., Fiori, G., Busatto, N., … Trainotti, L. (2016). On the role of ethylene, auxin and a GOLVEN-like peptide hormone in the regulation of peach ripening. BMC Plant Biology, 16(1), 44. http://doi.org/10.1186/s12870-016-0730-7

Tuan, P. A., Bai, S., Yaegaki, H., Tamura, T., Hihara, S., Moriguchi, T., & Oda, K. (2015). The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype. BMC Plant Biology, 15(1), 280. http://doi.org/10.1186/s12870-015-0664-5

Yu, Z., Lirong, W., Wei, C., Gengrui, Z., Weichao, F., Changwen, C., & Futian, P. (2013). Genetic diversity of anthocyanin in peach fruit and the evaluating criterion of red-flesh peach. Journal of Plant Genetic Resources, 14(1), 169–174. Retrieved from http://www.ingentaconnect.com/content/jpgr/jpgr/2013/00000014/00000001/art00025#

Zhang, Q.-P., Li, J., Wang, L.-R., Zhu, G.-R., Fang, W-C., Cao, K., Chen, C.-W., Feng, Y.-B. (2008). Study on the changes of contents of pigments, sugar and acid of blood-flesh peach cultivar during fruit development. Journal of Fruit Science, 25(3), 312-315. Retrieved from http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSKK200803007.htm

Zheng, Y., Tian, L., Liu, H., Pan, Q., Zhan, J., & Huang, W. (2009). Sugars induce anthocyanin accumulation and flavanone 3-hydroxylase expression in grape berries. Plant Growth Regulation, 58(3), 251–260. http://doi.org/10.1007/s10725-009-9373-0

DOI: http://doi.org/10.17503/agrivita.v40i2.1094

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.